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On the simple actuator disk
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The standard textbook model of a helicopter rotor in vertical translation, a disk
loaded with a uniform pressure jump in inviscid fluid, is revisited in search of correct
descriptions of the far-field velocity and of the vortex sheet, allowing a rigorous
control-volume analysis. The translation rate is not required to be large compared
with the induced velocity. The classical results for induced power are unchanged, and
now have a strong foundation: they are exact within the steady inviscid problem
statement, instead of depending on a quasi-one-dimensional approximation as in the
literature. Conversely, even with a uniform pressure jump the induced velocity is far
from uniform over the disk, again in conflict with common beliefs and with any quasi-
one-dimensional argument: the flow is upwards near the rim, both inside and outside
it. The cross-section of the vortex sheet probably begins with a 45◦ spiral, as opposed
to the smooth funnel shape that has been sketched, in the literature and below. A
viscous numerical solution supports this conjecture. Plausible boundaries between
the translation rates that produce the two ‘clean’ streamtube flow types, namely
climb/hover and rapid descent, and those in-between that produce the vortex-ring
state are also discussed.

1. Introduction
In the literature on helicopters (Gessow & Myers 1952; Bramwell 1976; Stepniewski

1979; Leishman 2000) the streamtube model (STM) of rotor flow fields combined
with ‘momentum theory’ is presented as a slightly crude approximation, most useful
for scaling arguments, but in the end providing better quantitative accuracy than
could be expected. The derivations appear sketchy in places, and partly disconnected
from the equations of motion. An obstacle is that for a rotor in and near hover, in
contrast with a propeller, there is no small parameter on which to build a systematic
approximation. The solution is also presented as producing ‘unphysical’ branches;
this is unavoidable since the real flow follows one branch in climb and hover (C-H),
and another in rapid descent (RD), which necessitates a ‘jump’. It is tempting to call
the conditions for descent rates between the ranges where the STM is supported by
experiments the vortex-ring state. There is consensus on this, but not on whether the
C-H branch becomes ‘unphysical’ in descent no matter how slow the descent or only
for finite descent rates (i.e. of the same order as the average induced velocity vh).
The line type in figures often switches from solid in climb to dashed in descent, as
a reminder. Considering the safety implications and that experimental and numerical
results for induced power follow the C-H branch quite closely even for appreciable
descent rates, nearing vh/2, revisiting this régime is justified.

A weakness of the textbook derivations is that they are confined to the interior
of the streamtube that crosses the actuator disk. Oddly, the control-volume analyses
fail to mention the pressure forces on this tube, except for one passing comment
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(Leishman 2000, p. 39). Since it has a non-uniform cross-section, these pressures
must enter an axial momentum balance. Knowledge of the velocity and pressure
outside the tube and particularly in the far field is needed for rigorous momentum-
balance statements, especially since the streamtube shape is not simple near the hover
condition. This knowledge will be helpful for numerical studies as well, both in
terms of validation and of devising effective far-field numerical boundary conditions.
Finally, when attempting to take into account the turbulence which develops in the
wake and thus erodes the validity of the inviscid model, it becomes essential to know
the flow direction outside the streamtube.

Another issue is that the presentations usually imply that the induced velocity
is uniform over the disk, at least to a good approximation for a uniformly loaded
rotor. However, this is not confirmed by numerical solutions, and experiments are
very unlikely to settle the issue because of the small number of blades. As this
uniformity has been linked to the concept of an ‘ideal rotor’ with minimum power
requirement, this failure could be important. The desirability of this uniform-load
feature in practice suggests that actual aircraft are not far from achieving it; in other
words, it is not only the simplest case to analyse. Misleading expectations, such as
this one of a uniform velocity, will also confuse the validation of CFD efforts. Finally,
the flow direction near the rotor edge has implications for blade–vortex interactions.

This note presents a more rigorous flow model and exact integral results, but
falls short of a full analytical solution of the equations. The resulting performance
equations are the same as before due to cancellations, so that the study does not
challenge established scaling arguments nor design practices. The aim of this note is
to improve understanding of a classical subject.

2. Flow model and principal results
2.1. Problem statement

Consider an actuator disk with radius R and pressure jump �p in the x-direction.
The device may be a rotor, propeller, or windmill; for helicopters, the x-axis will be
identified with the upward or downward vertical direction, depending on the flight
régime. The disk is translating at a velocity −U in the x-direction with respect to
the ambient fluid. The quantities �p or U may be of either sign. Climb, hover and
descent cases are treated with the same equations, as are propellers and windmills,
save for the final selection of a root of a quadratic equation. However it is assumed
that the action of the disk creates a vortex tube that exits in the positive x-direction.
This depends on the combination of �p and U and the conditions under which it
appears physical will be discussed later. In the reference frame of the disk the flow
is steady, and the velocity in the far field is U . This is seen in figure 1, where the
streamtube shape is assumed to be smooth for now, and the easily visualized climb
(or propeller) case is taken.

For large positive x, the streamtube has radius R2, and the velocity inside it, with
reference to the frame of the disk, is U + u2. The velocity of the vorticity in the shear
layer surrounding the streamtube is U + u2/2. Therefore, a first-cut criterion for the
model to be physical is U + u2/2 > 0. This is taken up again in § 2.4.

There is no assumption that the velocity through the disk is nearly aligned with the
x-axis, nor uniform. In fact the only assertion is that the edge of the actuator surface
is the circle of radius R; the surface could be a dome or cone, without changing the
velocity field. This is because only the curl of the force field has any influence in an
incompressible fluid, and this curl is concentrated on the rim.



Actuator disk 401

U

U

U + u2

�

Figure 1. Flow schematic in a helicopter climb or propeller condition: —, disk; - - -,
streamtube, not carrying vorticity; - — -, streamtube, carrying vorticity. U and U + u2 indicate
the approximate local velocity, with respect to the disk’s reference frame.

2.2. Far-field velocity

The disk is aspirating fluid and expelling it through the tube at a rate πR2
2u2 over the

ambient U . Other than the tube surface, the fluid is irrotational. Therefore, the flow
field induced by the disk at large distances is a sink, of magnitude πR2

2u2, so that the
velocity vector at a distance r � R is

u = U ex − u2

R2
2

4r2
er + O

(
1

r3

)
; (1)

here ex and er are the unit vectors in the x- and r-directions. The spherical coordinates
place θ = 0 as the direction in which the outflow tube points, so that er · ex = cos θ .
To leading order, the sink term is what bends the streamline in figure 1. The leading
correction of order 1/r3 corresponds to an offset of the sink along the x-axis; it is
centred at a distance of order R from the origin. The reason is that the shape of the
streamtube is not known, and it represents the placement of a distribution of vortex
rings in the vicinity of the origin, with a finite total circulation. The velocity induced
by these vortex rings is of order 1/r3 for large r .

In rapid climb or rapid descent, the streamtube of the actuator disk extends far
upstream and far downstream, in keeping with the sketches in the literature and
figure 1. In contrast, in hover or slow climb and descent, the streamtube feeds from
a sleeve around itself and not from above. The air rises, and turns around before
draining through the tube. This is due to the sink term in the velocity formula (1).

2.3. Performance equations

The control volume is a large sphere. The x-momentum entering a sphere is the
integral of −(ρuxu + pex) · er , with ρ the density and p the pressure. Bernoulli’s
equation p + ρ|u|2/2 =p∞ + ρU 2/2 applies, with an additional �p applied to the
fluid that went through the disk. The pressure p2 in the tube at x � R matches
the pressure outside the tube at r = x with θ → 0; therefore, the pressure integral
can be taken over the complete sphere. In contrast, the integrals for the momentum
term ρuxu are separated. The limits of integration for the sphere boundary outside
the outflow tube are arcsin(R2/r) < θ < π. The momentum leaving through the tube
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is πR2
2ρ[U + u2]

2. The momentum input due to the disk is πR2�p. Integrals in the
azimuthal direction give 2π, the flow being axisymmetric. This leads to

−2πr2ρ

∫ π

arcsin(R2/r)

uxur sin θ dθ − 2πr2

∫ π

0

pex · er sin θ dθ + πR2�p = πR2
2ρ(U + u2)

2.

Substitute expressions for u and p from (1) and Bernoulli’s equation, accurate to
O(1/r3):

−2πr2ρ

∫ π

arcsin(R2/r)

(
U − u2

R2
2

4r2
cos θ

)(
U cos θ − u2

R2
2

4r2

)
sin θ dθ

−2πr2

∫ π

0

(
p∞ + ρUu2

R2
2

4r2
cos θ

)
cos θ sin θ dθ + πR2�p = πR2

2ρ(U + u2)
2 + O

(
1

r

)
.

The integrals give

R2�p =R2
2ρ(U + u2)u2 (2)

in which the O(1/r) correction was dropped since r is arbitrarily large.
Bernoulli’s equation for fluid far downstream in the streamtube is p∞ + ρ(U + u2)

2/

2 =p∞ + �p + ρU 2/2, or

ρu2

(
U +

u2

2

)
= �p. (3)

This quadratic yields u2, from U and �p/ρ. Combined with (2), it gives(
U +

u2

2

)
R2 = R2

2(U + u2), (4)

which yields R2. The volume flow through the disk gives the total power P =
�pπR2(U + u2/2), and the induced power

Pi = �pπR2 u2

2
, (5)

since the useful power is �pπR2U .
These are the classical results, but a derivation based on the momentum balance in a

large domain with a far-field behaviour known to a high enough order (here, O(1/r3))
is far more satisfactory. There is no appeal to ‘quasi-one-dimensional’ arguments. It
is not assumed, nor shown, that the induced velocity is uniform at the disk. Let
vh ≡

√
|�p|/(2ρ) be the ‘standard induced velocity in hover’, as given by (3) and (4)

with U = 0 since R2vh = R2u2. In hover, the average induced velocity is indeed vh,
but numerical solutions show the velocity to be about 1.22 × vh near the axis, and
to be opposite (an upflow) near the edge of the disk, roughly for r > 0.92R (in an
actual rotor, this tendency may be overpowered by the influence of the blade’s bound
vortex). As a result, the idea that the ‘ideal rotor’ has a uniform induced velocity at the
disk, or even tends towards it, is erroneous. The superficial similarity with the ‘ideal
wing’ in lifting-line theory is probably the cause of this long-lived misconception.
Nevertheless, a rotor with uniform �p does minimize the induced power for a given
disk size and thrust. The reason is that the induced velocity far downstream in the
tube is uniform at U + u2 (the curl of the velocity being zero inside the tube, and x

derivatives having gone to zero, we have ∂u/∂r = ωθ = 0), so that the flux of kinetic
energy is minimized for a given thrust and rotor area. This minimizes power.

The agreement between the present results and the traditional ones raises the
suspicion that the cancellation is a simple matter that could be and had been predicted,
making the contribution redundant. However, to the author’s knowledge, this did not
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Figure 2. Flow field near actuator disk in hover, U = 0. Left, contours of axial velocity;
—, down, - - - up. Right, contours of vorticity.

occur. The words ‘one-dimensional’ are ubiquitous in the textbooks, whereas no such
assumption is needed here. The cancellation amounts to the following. In figure 1,
consider the streamtube from −∞ to +∞, and the pressure on it. The tube has convex
and then concave curvature, causing a drop and then a rise in pressure, relative to
the ambient pressure p∞; this is with U �= 0. This allows for a cancellation in the
axial momentum balance. However, since the tube shape is not known analytically,
nor is the pressure, predicting that cancellation is far from immediate. The proof
by control-volume analysis is quite elementary, but requires a statement about the
asymptotic behaviour of the velocity and pressure fields for large r , as in (1), which
is not found in the literature.

2.4. Streamtube shape

This shape is not as simple as in the usual sketches (or that in figure 1). Imagine
that its cross-section were a smooth curve. The part that carries vorticity would be
a vortex sheet, with a finite density, ending abruptly on the edge of the disk. Now
the velocity at the tip of such a sheet is infinite, so that this geometry is ruled out.
It is most likely that the exact shape, for the infinitely thin sharp-edged disk, is a
volute wound around the disk’s edge. The two-dimensional Euler equations admit an
exact solution with a vortex sheet of uniform density placed on a 45◦ spiral. It has
an infinite number of turns but finite length, and therefore circulation. The density of
the vortex sheet is �u = 1.477

√
�p/ρ, only slightly higher than it is far downstream

(
√

2
√

�p/ρ); as a result, the two asymptotes of the solution can join smoothly. These
numbers apply in hover. Analytical or numerical solutions to the full problem, with
zero thickness (pure top-hat loading) were not found in the literature, and neither
was any mention of a spiral. For smoother pressure-jump distributions, the shape
tends towards a spiral without creating the singularity, but still explains the upflow
near the edge. This holds even in climb and rapid descent, although the extent of the
spiral would shrink; essentially, the flow field needs to respond to a singular injection
of vorticity, and streamlines with bounded curvature cannot support that.

Figure 2 supports this model of a spiral; contrast with the notional shape in figure 1.
It is a solution of the incompressible Navier–Stokes equation with a Reynolds number
of 4 × 103 based on vh and R; U is zero. It was obtained from a spectral method
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with a grid spacing equal to R/64. The source of vorticity was de-singularized with a
Gaussian of the type exp(−r2/σ 2) with σ =R/50. Both the contours of axial velocity
and the locus of the vortex sheet reveal the upwash near the edge of the disk, as well
as all along the outside of the vortex tube. This was somewhat unexpected in hover,
before (1) was established. The locus is consistent with a smeared spiral.

3. Region of validity of the streamtube model
3.1. Notation

This is not an issue for propellers and windmills. This section reverts to the traditional
notation for helicopters: Vc for the climb rate (therefore upwards, in the direction of
the thrust) and v2 for the velocity far down inside the streamtube. Equation (3) gives

two solutions u2 = ±
√

U 2 + 2�p/ρ − U . The C-H branch of the curve has �p > 0
(x downwards), Vc = U , v2 = u2. The negative solution for u2 is discarded because it
makes the streamtube exit in the wrong direction. The RD branch has �p < 0 (x
upwards), Vc = −U < 0, v2 = −u2. Solutions to the quadratic equation for u2 exist only
if U 2 � 2|�p|/ρ, and the correct branch for u2 is that with a + sign, the ‘windmill
brake state’. The – sign solution has negative U + u2, meaning it is aspirating air
through the tube, which is unphysical.

The vortex-ring state occurs roughly in the region [−2, −1] for Vc/vh, and is loosely
identified with a failure of the STM. The STM predicts a large increase of the induced
power (5) when descending (Gessow & Myers 1952, p. 130), but not a reversal of the
dependence of total power on descent rate, which would be a plausible criterion to
define a severe control difficulty.

3.2. Condition of vorticity propagation far downstream

The tentative condition U + u2/2 > 0 was mentioned above. On the C-H branch it
does not give any limit on Vc, because of the relationships U/vh = 2vh/u2 − u2/(2vh),
so that U + u2/2 = 2v2

h/u2 > 0 always. The situation is similar for the RD branch; the
solution also ‘avoids’ the line U + u2/2 = 0. This condition is not helpful, other than
in selecting the sign in the solution of the quadratic equation, in § 3.1.

3.3. Condition of vorticity propagation near the rotor

The average induced velocity at the rotor is u2/2, so that the vorticity transport
velocity is approximately U + u2/4 instead of U + u2/2. The equations then yield
the following. The C-H branch has U + u2/4 = 2v2

h/u2 − u2/4. This becomes negative
when u2 =

√
8vh, and therefore Vc = U = −

√
2vh. This is closer to the experimentally

found value for which the induced power strongly deviates from the C-H branch of
the model.

3.4. Impact of jet turbulence

The flow at positive x is a jet, which will become turbulent and mix in practice, in
contrast with a steady axisymmetric Euler solution. In rapid climb, this turbulence is
transported away and has little impact, but in slow climb or any descent the aircraft
must catch up with its own turbulence: some of the air ingested by the rotor has been
mixed with air that had already passed through it. There is recirculation, implying at
least diffuse turbulence and vorticity. In that sense, the STM loses validity near the
hover condition once turbulence is acknowledged to exist. However, this reason is not
given in the literature, and there is no special meaning to the hover condition in this
respect. At lower descent rates the turbulence is weaker by the time it comes back
and envelops the near-field, although it still exists.
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3.5. Conclusions relative to the region of validity

These considerations unfortunately do not provide tight boundaries between
‘streamtube states’ and vortex-ring states, even for a greatly idealized rotor.
Approaching the vortex-ring state from above, by increasing the descent rate, the
rotor re-ingests turbulence that has had less and less time to decay. The STM fails
gradually. Approaching the vortex-ring state from below, the RD branch stops at
Vc = −2vh, as the streamtube above the rotor expands to infinity. This failure of
the STM is more abrupt than the failure from above, and experimental results may
support this idea, in that the power measured experimentally indeed appears to jump
at Vc = −2vh in some datasets.

4. Summary
This note presents a mathematical model of the flow induced by an actuator disk in

axial translation which appears to be new, although simple, and is more accurate than
those in a half-century of helicopter literature. Due to cancellations, the performance
results are unchanged, but the common presumption that the streamtube has finite
curvature and especially the assertion that the induced velocity is fairly uniform are
both proven to be incorrect. This is confirmed by numerical results. A prediction is
attempted of the boundaries of the vortex-ring state by considering the propagation
of vorticity and turbulence, yielding only moderate success but never in contradiction
with test results. The extension to flight in general translation will be considered, and
numerical simulations are in progress.

The author thanks Dr L. Wigton for identifying the spiral solution, and Dr J.
Forsythe for reviewing the manuscript.
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